Extracting Rules from Artificial Neural Networks with Distributed Representations

نویسنده

  • Sebastian Thrun
چکیده

Althoughartificial neural networks have been applied in a variety of real-world scenarios with remarkable success, they have often been criticized for exhibiting a low degree of human comprehensibility. Techniques that compile compact sets of symbolic rules out of artificial neural networks offer a promising perspective to overcome this obvious deficiency of neural network representations. This paper presents an approach to the extraction of if-then rules from artificial neural networks. Its key mechanism is validity interval analysis, which is a generic tool for extracting symbolic knowledge by propagating rule-like knowledge through Backpropagation-style neural networks. Empirical studies in a robot arm domain illustrate the appropriateness of the proposed method for extracting rules from networks with real-valued and distributed representations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Rules from Artifical Neural Networks with Distributed Representations

Although artificial neural networks have been applied in a variety of real-world scenarios with remarkable success, they have often been criticized for exhibiting a low degree of human comprehensibility. Techniques that compile compact sets of symbolic rules out of artificial neural networks offer a promising perspective to overcome this obvious deficiency of neural network representations. Thi...

متن کامل

Learning Symbolic Rules Using Arti cial Neural

A distinct advantage of symbolic learning algorithms over artiicial neural networks is that typically the concept representations they form are more easily understood by humans. One approach to understanding the representations formed by neural networks is to extract symbolic rules from trained networks. In this paper we describe and investigate an approach for extracting rules from networks th...

متن کامل

Extracting Material Information from the CT Numbers by Artificial Neural Networks for Use in the Monte Carlo Simulations of Different Tissue Types in Brachytherapy

Background: The artificial neural networks (ANNs) are useful in solving nonlinear processes, without the need for mathematical models of the parameters. Since the relationship between the CT numbers and material compositions is not linear, ANN can be used for obtaining tissue density and composition.Objective: The aim of this study is to utilize ANN for determination of the composition and mass...

متن کامل

Use of Artificial Neural Networks and PCA to Predict Results of Infertility Treatment in the ICSI Method

Background: Intracytoplasmic sperm injection (ICSI) or microinjection is one of the most commonly used assisted reproductive technologies (ART) in the treatment of patients with infertility problems. At each stage of this treatment cycle, many dependent and independent variables may affect the results, according to which, estimating the accuracy of fertility rate for physicians will be difficul...

متن کامل

Extracting Comprehensible Concept Representations from Trained Neural Networks

Although they are applicable to a wide array of problems, and have demonstrated good performance on a number of diicult, real-world tasks, neural networks are not usually applied to problems in which compre-hensibility of the acquired concepts is important. The concept representations formed by neural networks are hard to understand because they typically involve distributed, nonlinear relation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995